#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
#define L3FWDACL_DEBUG
#endif
#define DO_RFC_1812_CHECKS
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
#define MAX_JUMBO_PKT_LEN 9600
#define MEMPOOL_CACHE_SIZE 256
#define NB_MBUF RTE_MAX(\
(nb_ports * nb_rx_queue * nb_rxd + \
nb_ports * nb_lcores * MAX_PKT_BURST + \
nb_ports * n_tx_queue * nb_txd + \
nb_lcores * MEMPOOL_CACHE_SIZE), \
(unsigned)8192)
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100
#define NB_SOCKETS 8
#define PREFETCH_OFFSET 3
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
static uint32_t enabled_port_mask;
static int promiscuous_on;
static int numa_on = 1;
struct lcore_rx_queue {
uint16_t port_id;
uint8_t queue_id;
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
#define MAX_RX_QUEUE_PER_PORT 128
#define MAX_LCORE_PARAMS 1024
struct lcore_params {
uint16_t port_id;
uint8_t queue_id;
uint8_t lcore_id;
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
static struct lcore_params lcore_params_array_default[] = {
{0, 0, 2},
{0, 1, 2},
{0, 2, 2},
{1, 0, 2},
{1, 1, 2},
{1, 2, 2},
{2, 0, 2},
{3, 0, 3},
{3, 1, 3},
};
static struct lcore_params *lcore_params = lcore_params_array_default;
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
sizeof(lcore_params_array_default[0]);
.split_hdr_size = 0,
.offloads = DEV_RX_OFFLOAD_CHECKSUM,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
ETH_RSS_TCP | ETH_RSS_SCTP,
},
},
.txmode = {
},
};
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(
struct rte_ipv4_hdr *pkt, uint32_t link_len);
#endif
static inline void
#define MAX_ACL_RULE_NUM 100000
#define DEFAULT_MAX_CATEGORIES 1
#define L3FWD_ACL_IPV4_NAME "l3fwd-acl-ipv4"
#define L3FWD_ACL_IPV6_NAME "l3fwd-acl-ipv6"
#define ACL_LEAD_CHAR ('@')
#define ROUTE_LEAD_CHAR ('R')
#define COMMENT_LEAD_CHAR ('#')
#define OPTION_CONFIG "config"
#define OPTION_NONUMA "no-numa"
#define OPTION_ENBJMO "enable-jumbo"
#define OPTION_RULE_IPV4 "rule_ipv4"
#define OPTION_RULE_IPV6 "rule_ipv6"
#define OPTION_SCALAR "scalar"
#define ACL_DENY_SIGNATURE 0xf0000000
#define RTE_LOGTYPE_L3FWDACL RTE_LOGTYPE_USER3
#define acl_log(format, ...) RTE_LOG(ERR, L3FWDACL, format, ##__VA_ARGS__)
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (unsigned char)(ip >> 24 & 0xff);\
*b = (unsigned char)(ip >> 16 & 0xff);\
*c = (unsigned char)(ip >> 8 & 0xff);\
*d = (unsigned char)(ip & 0xff);\
} while (0)
#define OFF_ETHHEAD (sizeof(struct rte_ether_hdr))
#define OFF_IPV42PROTO (offsetof(struct rte_ipv4_hdr, next_proto_id))
#define OFF_IPV62PROTO (offsetof(struct rte_ipv6_hdr, proto))
#define MBUF_IPV4_2PROTO(m) \
rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV42PROTO)
#define MBUF_IPV6_2PROTO(m) \
rte_pktmbuf_mtod_offset((m), uint8_t *, OFF_ETHHEAD + OFF_IPV62PROTO)
#define GET_CB_FIELD(in, fd, base, lim, dlm) do { \
unsigned long val; \
char *end; \
errno = 0; \
val = strtoul((in), &end, (base)); \
if (errno != 0 || end[0] != (dlm) || val > (lim)) \
return -EINVAL; \
(fd) = (typeof(fd))val; \
(in) = end + 1; \
} while (0)
#define ACL_RULE_PRIORITY_MAX 0x10000000
#define FWD_PORT_SHIFT 1
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};
enum {
RTE_ACL_IPV4VLAN_PROTO,
RTE_ACL_IPV4VLAN_VLAN,
RTE_ACL_IPV4VLAN_SRC,
RTE_ACL_IPV4VLAN_DST,
RTE_ACL_IPV4VLAN_PORTS,
RTE_ACL_IPV4VLAN_NUM
};
{
.
type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
sizeof(uint16_t),
},
};
#define IPV6_ADDR_LEN 16
#define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t))
#define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t))
enum {
PROTO_FIELD_IPV6,
SRC1_FIELD_IPV6,
SRC2_FIELD_IPV6,
SRC3_FIELD_IPV6,
SRC4_FIELD_IPV6,
DST1_FIELD_IPV6,
DST2_FIELD_IPV6,
DST3_FIELD_IPV6,
DST4_FIELD_IPV6,
SRCP_FIELD_IPV6,
DSTP_FIELD_IPV6,
NUM_FIELDS_IPV6
};
{
.
type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
},
};
enum {
CB_FLD_SRC_ADDR,
CB_FLD_DST_ADDR,
CB_FLD_SRC_PORT_LOW,
CB_FLD_SRC_PORT_DLM,
CB_FLD_SRC_PORT_HIGH,
CB_FLD_DST_PORT_LOW,
CB_FLD_DST_PORT_DLM,
CB_FLD_DST_PORT_HIGH,
CB_FLD_PROTO,
CB_FLD_USERDATA,
CB_FLD_NUM,
};
struct acl_search_t {
const uint8_t *data_ipv4[MAX_PKT_BURST];
uint32_t res_ipv4[MAX_PKT_BURST];
int num_ipv4;
const uint8_t *data_ipv6[MAX_PKT_BURST];
uint32_t res_ipv6[MAX_PKT_BURST];
int num_ipv6;
};
static struct {
char mapped[NB_SOCKETS];
struct rte_acl_ctx *acx_ipv4[NB_SOCKETS];
struct rte_acl_ctx *acx_ipv6[NB_SOCKETS];
#ifdef L3FWDACL_DEBUG
struct acl4_rule *rule_ipv4;
struct acl6_rule *rule_ipv6;
#endif
} acl_config;
static struct{
const char *rule_ipv4_name;
const char *rule_ipv6_name;
int scalar;
} parm_config;
const char cb_port_delim[] = ":";
static inline void
print_one_ipv4_rule(struct acl4_rule *rule, int extra)
{
unsigned char a, b, c, d;
uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV4].value.u16,
rule->field[SRCP_FIELD_IPV4].mask_range.u16,
rule->field[DSTP_FIELD_IPV4].value.u16,
rule->field[DSTP_FIELD_IPV4].mask_range.u16,
rule->field[PROTO_FIELD_IPV4].value.u8,
rule->field[PROTO_FIELD_IPV4].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
static inline void
print_one_ipv6_rule(struct acl6_rule *rule, int extra)
{
unsigned char a, b, c, d;
uint32_t_to_char(rule->field[SRC1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[SRC1_FIELD_IPV6].mask_range.u32
+ rule->field[SRC2_FIELD_IPV6].mask_range.u32
+ rule->field[SRC3_FIELD_IPV6].mask_range.u32
+ rule->field[SRC4_FIELD_IPV6].mask_range.u32);
uint32_t_to_char(rule->field[DST1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[DST1_FIELD_IPV6].mask_range.u32
+ rule->field[DST2_FIELD_IPV6].mask_range.u32
+ rule->field[DST3_FIELD_IPV6].mask_range.u32
+ rule->field[DST4_FIELD_IPV6].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV6].value.u16,
rule->field[SRCP_FIELD_IPV6].mask_range.u16,
rule->field[DSTP_FIELD_IPV6].value.u16,
rule->field[DSTP_FIELD_IPV6].mask_range.u16,
rule->field[PROTO_FIELD_IPV6].value.u8,
rule->field[PROTO_FIELD_IPV6].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
static inline int
is_bypass_line(char *buff)
{
int i = 0;
if (buff[0] == COMMENT_LEAD_CHAR)
return 1;
while (buff[i] != '\0') {
if (!isspace(buff[i]))
return 0;
i++;
}
return 1;
}
#ifdef L3FWDACL_DEBUG
static inline void
dump_acl4_rule(
struct rte_mbuf *m, uint32_t sig)
{
uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
unsigned char a, b, c, d;
printf("Packet Src:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
printf("Dst:%hhu.%hhu.%hhu.%hhu ", a, b, c, d);
printf("Src port:%hu,Dst port:%hu ",
printf("hit ACL %d - ", offset);
print_one_ipv4_rule(acl_config.rule_ipv4 + offset, 1);
printf("\n\n");
}
static inline void
dump_acl6_rule(
struct rte_mbuf *m, uint32_t sig)
{
unsigned i;
uint32_t offset = sig & ~ACL_DENY_SIGNATURE;
printf("Packet Src");
printf(":%.2x%.2x",
printf("\nDst");
printf(":%.2x%.2x",
printf("\nSrc port:%hu,Dst port:%hu ",
printf("hit ACL %d - ", offset);
print_one_ipv6_rule(acl_config.rule_ipv6 + offset, 1);
printf("\n\n");
}
#endif
static inline void
dump_ipv4_rules(struct acl4_rule *rule, int num, int extra)
{
int i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ipv4_rule(rule, extra);
printf("\n");
}
}
static inline void
dump_ipv6_rules(struct acl6_rule *rule, int num, int extra)
{
int i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ipv6_rule(rule, extra);
printf("\n");
}
}
#ifdef DO_RFC_1812_CHECKS
static inline void
prepare_one_packet(
struct rte_mbuf **pkts_in,
struct acl_search_t *acl,
int index)
{
if (is_valid_ipv4_pkt(ipv4_hdr, pkt->
pkt_len) >= 0) {
acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
acl->m_ipv4[(acl->num_ipv4)++] = pkt;
} else {
}
acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
acl->m_ipv6[(acl->num_ipv6)++] = pkt;
} else {
}
}
#else
static inline void
prepare_one_packet(
struct rte_mbuf **pkts_in,
struct acl_search_t *acl,
int index)
{
acl->data_ipv4[acl->num_ipv4] = MBUF_IPV4_2PROTO(pkt);
acl->m_ipv4[(acl->num_ipv4)++] = pkt;
acl->data_ipv6[acl->num_ipv6] = MBUF_IPV6_2PROTO(pkt);
acl->m_ipv6[(acl->num_ipv6)++] = pkt;
} else {
}
}
#endif
static inline void
prepare_acl_parameter(
struct rte_mbuf **pkts_in,
struct acl_search_t *acl,
int nb_rx)
{
int i;
acl->num_ipv4 = 0;
acl->num_ipv6 = 0;
for (i = 0; i < PREFETCH_OFFSET && i < nb_rx; i++) {
pkts_in[i], void *));
}
for (i = 0; i < (nb_rx - PREFETCH_OFFSET); i++) {
i + PREFETCH_OFFSET], void *));
prepare_one_packet(pkts_in, acl, i);
}
for (; i < nb_rx; i++)
prepare_one_packet(pkts_in, acl, i);
}
static inline void
send_one_packet(
struct rte_mbuf *m, uint32_t res)
{
if (
likely((res & ACL_DENY_SIGNATURE) == 0 && res != 0)) {
send_single_packet(m,
(uint8_t)(res - FWD_PORT_SHIFT));
} else{
#ifdef L3FWDACL_DEBUG
if ((res & ACL_DENY_SIGNATURE) != 0) {
dump_acl4_rule(m, res);
dump_acl6_rule(m, res);
}
#endif
}
}
static inline void
send_packets(
struct rte_mbuf **m, uint32_t *res,
int num)
{
int i;
for (i = 0; i < PREFETCH_OFFSET && i < num; i++) {
m[i], void *));
}
for (i = 0; i < (num - PREFETCH_OFFSET); i++) {
i + PREFETCH_OFFSET], void *));
send_one_packet(m[i], res[i]);
}
for (; i < num; i++)
send_one_packet(m[i], res[i]);
}
static int
parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
char dlm)
{
uint32_t addr[IPV6_ADDR_U16];
GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);
*end = in;
v[0] = (addr[0] << 16) + addr[1];
v[1] = (addr[2] << 16) + addr[3];
v[2] = (addr[4] << 16) + addr[5];
v[3] = (addr[6] << 16) + addr[7];
return 0;
}
static int
{
int32_t rc;
const char *mp;
uint32_t i, m, v[4];
const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;
rc = parse_ipv6_addr(in, &mp, v, '/');
if (rc != 0)
return rc;
GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);
for (i = 0; i !=
RTE_DIM(v); i++) {
if (m >= (i + 1) * nbu32)
field[i].mask_range.u32 = nbu32;
else
field[i].mask_range.u32 = m > (i * nbu32) ?
m - (i * 32) : 0;
field[i].
value.u32 = v[i];
}
return 0;
}
static int
parse_cb_ipv6_rule(char *str, struct rte_acl_rule *v, int has_userdata)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
s = str;
for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
}
rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
if (rc != 0) {
acl_log("failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
if (rc != 0) {
acl_log("failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
if (v->field[SRCP_FIELD_IPV6].mask_range.u16
< v->field[SRCP_FIELD_IPV6].value.u16
|| v->field[DSTP_FIELD_IPV6].mask_range.u16
< v->field[DSTP_FIELD_IPV6].value.u16)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8,
0, UINT8_MAX, 0);
if (has_userdata)
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata,
0, UINT32_MAX, 0);
return 0;
}
static int
parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
{
uint8_t a, b, c, d, m;
GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);
mask_len[0] = m;
return 0;
}
static int
parse_cb_ipv4vlan_rule(char *str, struct rte_acl_rule *v, int has_userdata)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
int dim = has_userdata ? CB_FLD_NUM : CB_FLD_USERDATA;
s = str;
for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
}
rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
&v->field[SRC_FIELD_IPV4].value.u32,
&v->field[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
acl_log("failed to read source address/mask: %s\n",
in[CB_FLD_SRC_ADDR]);
return rc;
}
rc = parse_ipv4_net(in[CB_FLD_DST_ADDR],
&v->field[DST_FIELD_IPV4].value.u32,
&v->field[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
acl_log("failed to read destination address/mask: %s\n",
in[CB_FLD_DST_ADDR]);
return rc;
}
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV4].value.u16,
0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV4].mask_range.u16,
0, UINT16_MAX, 0);
if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;
if (v->field[SRCP_FIELD_IPV4].mask_range.u16
< v->field[SRCP_FIELD_IPV4].value.u16
|| v->field[DSTP_FIELD_IPV4].mask_range.u16
< v->field[DSTP_FIELD_IPV4].value.u16)
return -EINVAL;
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8,
0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8,
0, UINT8_MAX, 0);
if (has_userdata)
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0,
UINT32_MAX, 0);
return 0;
}
static int
add_rules(const char *rule_path,
struct rte_acl_rule **proute_base,
unsigned int *proute_num,
struct rte_acl_rule **pacl_base,
unsigned int *pacl_num, uint32_t rule_size,
int (*parser)(char *, struct rte_acl_rule*, int))
{
uint8_t *acl_rules, *route_rules;
struct rte_acl_rule *next;
unsigned int acl_num = 0, route_num = 0, total_num = 0;
unsigned int acl_cnt = 0, route_cnt = 0;
char buff[LINE_MAX];
FILE *fh = fopen(rule_path, "rb");
unsigned int i = 0;
int val;
if (fh == NULL)
rte_exit(EXIT_FAILURE,
"%s: Open %s failed\n", __func__,
rule_path);
while ((fgets(buff, LINE_MAX, fh) != NULL)) {
if (buff[0] == ROUTE_LEAD_CHAR)
route_num++;
else if (buff[0] == ACL_LEAD_CHAR)
acl_num++;
}
if (0 == route_num)
rte_exit(EXIT_FAILURE,
"Not find any route entries in %s!\n",
rule_path);
val = fseek(fh, 0, SEEK_SET);
if (val < 0) {
rte_exit(EXIT_FAILURE,
"%s: File seek operation failed\n",
__func__);
}
acl_rules = calloc(acl_num, rule_size);
if (NULL == acl_rules)
rte_exit(EXIT_FAILURE,
"%s: failed to malloc memory\n",
__func__);
route_rules = calloc(route_num, rule_size);
if (NULL == route_rules)
rte_exit(EXIT_FAILURE,
"%s: failed to malloc memory\n",
__func__);
i = 0;
while (fgets(buff, LINE_MAX, fh) != NULL) {
i++;
if (is_bypass_line(buff))
continue;
char s = buff[0];
if (s == ROUTE_LEAD_CHAR)
next = (struct rte_acl_rule *)(route_rules +
route_cnt * rule_size);
else if (s == ACL_LEAD_CHAR)
next = (struct rte_acl_rule *)(acl_rules +
acl_cnt * rule_size);
else
"%s Line %u: should start with leading "
"char %c or %c\n",
rule_path, i, ROUTE_LEAD_CHAR, ACL_LEAD_CHAR);
if (parser(buff + 1, next, s == ROUTE_LEAD_CHAR) != 0)
"%s Line %u: parse rules error\n",
rule_path, i);
if (s == ROUTE_LEAD_CHAR) {
if ((enabled_port_mask & (1 << next->data.userdata)) ==
0)
"%s Line %u: fwd number illegal:%u\n",
rule_path, i, next->data.userdata);
next->data.userdata += FWD_PORT_SHIFT;
route_cnt++;
} else {
next->data.userdata = ACL_DENY_SIGNATURE + acl_cnt;
acl_cnt++;
}
next->data.priority = RTE_ACL_MAX_PRIORITY - total_num;
next->data.category_mask = -1;
total_num++;
}
fclose(fh);
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_num;
*proute_base = (struct rte_acl_rule *)route_rules;
*proute_num = route_cnt;
return 0;
}
static void
dump_acl_config(void)
{
printf("ACL option are:\n");
printf(OPTION_RULE_IPV4": %s\n", parm_config.rule_ipv4_name);
printf(OPTION_RULE_IPV6": %s\n", parm_config.rule_ipv6_name);
printf(OPTION_SCALAR": %d\n", parm_config.scalar);
}
static int
check_acl_config(void)
{
if (parm_config.rule_ipv4_name == NULL) {
acl_log("ACL IPv4 rule file not specified\n");
return -1;
} else if (parm_config.rule_ipv6_name == NULL) {
acl_log("ACL IPv6 rule file not specified\n");
return -1;
}
return 0;
}
static struct rte_acl_ctx*
setup_acl(struct rte_acl_rule *route_base,
struct rte_acl_rule *acl_base, unsigned int route_num,
unsigned int acl_num, int ipv6, int socketid)
{
char name[PATH_MAX];
struct rte_acl_ctx *context;
snprintf(name, sizeof(name), "%s%d",
ipv6 ? L3FWD_ACL_IPV6_NAME : L3FWD_ACL_IPV4_NAME,
socketid);
acl_param.name = name;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(dim);
acl_param.max_rule_num = MAX_ACL_RULE_NUM;
rte_exit(EXIT_FAILURE,
"Failed to create ACL context\n");
if (parm_config.scalar && rte_acl_set_ctx_classify(context,
"Failed to setup classify method for ACL context\n");
rte_exit(EXIT_FAILURE,
"add rules failed\n");
rte_exit(EXIT_FAILURE,
"add rules failed\n");
memset(&acl_build_param, 0, sizeof(acl_build_param));
acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = dim;
memcpy(&acl_build_param.defs, ipv6 ? ipv6_defs : ipv4_defs,
ipv6 ? sizeof(ipv6_defs) : sizeof(ipv4_defs));
rte_exit(EXIT_FAILURE,
"Failed to build ACL trie\n");
return context;
}
static int
app_acl_init(void)
{
unsigned lcore_id;
unsigned int i;
int socketid;
struct rte_acl_rule *acl_base_ipv4, *route_base_ipv4,
*acl_base_ipv6, *route_base_ipv6;
unsigned int acl_num_ipv4 = 0, route_num_ipv4 = 0,
acl_num_ipv6 = 0, route_num_ipv6 = 0;
if (check_acl_config() != 0)
rte_exit(EXIT_FAILURE,
"Failed to get valid ACL options\n");
dump_acl_config();
if (add_rules(parm_config.rule_ipv4_name, &route_base_ipv4,
&route_num_ipv4, &acl_base_ipv4, &acl_num_ipv4,
sizeof(struct acl4_rule), &parse_cb_ipv4vlan_rule) < 0)
rte_exit(EXIT_FAILURE,
"Failed to add rules\n");
acl_log("IPv4 Route entries %u:\n", route_num_ipv4);
dump_ipv4_rules((struct acl4_rule *)route_base_ipv4, route_num_ipv4, 1);
acl_log("IPv4 ACL entries %u:\n", acl_num_ipv4);
dump_ipv4_rules((struct acl4_rule *)acl_base_ipv4, acl_num_ipv4, 1);
if (add_rules(parm_config.rule_ipv6_name, &route_base_ipv6,
&route_num_ipv6,
&acl_base_ipv6, &acl_num_ipv6,
sizeof(struct acl6_rule), &parse_cb_ipv6_rule) < 0)
rte_exit(EXIT_FAILURE,
"Failed to add rules\n");
acl_log("IPv6 Route entries %u:\n", route_num_ipv6);
dump_ipv6_rules((struct acl6_rule *)route_base_ipv6, route_num_ipv6, 1);
acl_log("IPv6 ACL entries %u:\n", acl_num_ipv6);
dump_ipv6_rules((struct acl6_rule *)acl_base_ipv6, acl_num_ipv6, 1);
memset(&acl_config, 0, sizeof(acl_config));
if (!numa_on)
acl_config.mapped[0] = 1;
else {
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (socketid >= NB_SOCKETS) {
acl_log("Socket %d of lcore %u is out "
"of range %d\n",
socketid, lcore_id, NB_SOCKETS);
free(route_base_ipv4);
free(route_base_ipv6);
free(acl_base_ipv4);
free(acl_base_ipv6);
return -1;
}
acl_config.mapped[socketid] = 1;
}
}
for (i = 0; i < NB_SOCKETS; i++) {
if (acl_config.mapped[i]) {
acl_config.acx_ipv4[i] = setup_acl(route_base_ipv4,
acl_base_ipv4, route_num_ipv4, acl_num_ipv4,
0, i);
acl_config.acx_ipv6[i] = setup_acl(route_base_ipv6,
acl_base_ipv6, route_num_ipv6, acl_num_ipv6,
1, i);
}
}
free(route_base_ipv4);
free(route_base_ipv6);
#ifdef L3FWDACL_DEBUG
acl_config.rule_ipv4 = (struct acl4_rule *)acl_base_ipv4;
acl_config.rule_ipv6 = (struct acl6_rule *)acl_base_ipv6;
#else
free(acl_base_ipv4);
free(acl_base_ipv6);
#endif
return 0;
}
struct lcore_conf {
uint16_t n_rx_queue;
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t n_tx_port;
uint16_t tx_port_id[RTE_MAX_ETHPORTS];
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static inline void
{
uint32_t lcore_id;
struct lcore_conf *qconf;
qconf = &lcore_conf[lcore_id];
qconf->tx_buffer[
port], m);
}
#ifdef DO_RFC_1812_CHECKS
static inline int
is_valid_ipv4_pkt(
struct rte_ipv4_hdr *pkt, uint32_t link_len)
{
return -1;
return -3;
return -4;
return -5;
return 0;
}
#endif
static int
main_loop(__attribute__((unused)) void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
uint64_t prev_tsc, diff_tsc, cur_tsc;
int i, nb_rx;
uint16_t portid;
uint8_t queueid;
struct lcore_conf *qconf;
int socketid;
/ US_PER_S * BURST_TX_DRAIN_US;
prev_tsc = 0;
qconf = &lcore_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD,
"lcore %u has nothing to do\n", lcore_id);
return 0;
}
RTE_LOG(INFO, L3FWD,
"entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
lcore_id, portid, queueid);
}
while (1) {
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
for (i = 0; i < qconf->n_tx_port; ++i) {
portid = qconf->tx_port_id[i];
qconf->tx_queue_id[portid],
qconf->tx_buffer[portid]);
}
prev_tsc = cur_tsc;
}
for (i = 0; i < qconf->n_rx_queue; ++i) {
portid = qconf->rx_queue_list[i].port_id;
queueid = qconf->rx_queue_list[i].queue_id;
pkts_burst, MAX_PKT_BURST);
if (nb_rx > 0) {
struct acl_search_t acl_search;
prepare_acl_parameter(pkts_burst, &acl_search,
nb_rx);
if (acl_search.num_ipv4) {
acl_config.acx_ipv4[socketid],
acl_search.data_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4,
DEFAULT_MAX_CATEGORIES);
send_packets(acl_search.m_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4);
}
if (acl_search.num_ipv6) {
acl_config.acx_ipv6[socketid],
acl_search.data_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6,
DEFAULT_MAX_CATEGORIES);
send_packets(acl_search.m_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6);
}
}
}
}
}
static int
check_lcore_params(void)
{
uint8_t queue, lcore;
uint16_t i;
int socketid;
for (i = 0; i < nb_lcore_params; ++i) {
queue = lcore_params[i].queue_id;
if (queue >= MAX_RX_QUEUE_PER_PORT) {
printf("invalid queue number: %hhu\n", queue);
return -1;
}
lcore = lcore_params[i].lcore_id;
printf("error: lcore %hhu is not enabled in "
"lcore mask\n", lcore);
return -1;
}
if (socketid != 0 && numa_on == 0) {
printf("warning: lcore %hhu is on socket %d "
"with numa off\n",
lcore, socketid);
}
}
return 0;
}
static int
check_port_config(void)
{
unsigned portid;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
portid = lcore_params[i].port_id;
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("port %u is not enabled in port mask\n", portid);
return -1;
}
printf("port %u is not present on the board\n", portid);
return -1;
}
}
return 0;
}
static uint8_t
get_port_n_rx_queues(
const uint16_t
port)
{
int queue = -1;
uint16_t i;
for (i = 0; i < nb_lcore_params; ++i) {
if (lcore_params[i].port_id ==
port &&
lcore_params[i].queue_id > queue)
queue = lcore_params[i].queue_id;
}
return (uint8_t)(++queue);
}
static int
init_lcore_rx_queues(void)
{
uint16_t i, nb_rx_queue;
uint8_t lcore;
for (i = 0; i < nb_lcore_params; ++i) {
lcore = lcore_params[i].lcore_id;
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
printf("error: too many queues (%u) for lcore: %u\n",
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
return -1;
} else {
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
lcore_params[i].port_id;
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
lcore_params[i].queue_id;
lcore_conf[lcore].n_rx_queue++;
}
}
return 0;
}
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK -P"
"--"OPTION_RULE_IPV4"=FILE"
"--"OPTION_RULE_IPV6"=FILE"
" [--"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]]"
" [--"OPTION_ENBJMO" [--max-pkt-len PKTLEN]]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -P : enable promiscuous mode\n"
" --"OPTION_CONFIG": (port,queue,lcore): "
"rx queues configuration\n"
" --"OPTION_NONUMA": optional, disable numa awareness\n"
" --"OPTION_ENBJMO": enable jumbo frame"
" which max packet len is PKTLEN in decimal (64-9600)\n"
" --"OPTION_RULE_IPV4"=FILE: specify the ipv4 rules entries "
"file. "
"Each rule occupy one line. "
"2 kinds of rules are supported. "
"One is ACL entry at while line leads with character '%c', "
"another is route entry at while line leads with "
"character '%c'.\n"
" --"OPTION_RULE_IPV6"=FILE: specify the ipv6 rules "
"entries file.\n"
" --"OPTION_SCALAR": Use scalar function to do lookup\n",
prgname, ACL_LEAD_CHAR, ROUTE_LEAD_CHAR);
}
static int
parse_max_pkt_len(const char *pktlen)
{
char *end = NULL;
unsigned long len;
len = strtoul(pktlen, &end, 10);
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (len == 0)
return -1;
return len;
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_config(const char *q_arg)
{
char s[256];
const char *p, *p0 = q_arg;
char *end;
enum fieldnames {
FLD_PORT = 0,
FLD_QUEUE,
FLD_LCORE,
_NUM_FLD
};
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int i;
unsigned size;
nb_lcore_params = 0;
while ((p = strchr(p0, '(')) != NULL) {
++p;
if ((p0 = strchr(p, ')')) == NULL)
return -1;
size = p0 - p;
if (size >= sizeof(s))
return -1;
snprintf(s, sizeof(s), "%.*s", size, p);
_NUM_FLD)
return -1;
for (i = 0; i < _NUM_FLD; i++) {
errno = 0;
int_fld[i] = strtoul(str_fld[i], &end, 0);
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
return -1;
}
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
printf("exceeded max number of lcore params: %hu\n",
nb_lcore_params);
return -1;
}
lcore_params_array[nb_lcore_params].port_id =
(uint8_t)int_fld[FLD_PORT];
lcore_params_array[nb_lcore_params].queue_id =
(uint8_t)int_fld[FLD_QUEUE];
lcore_params_array[nb_lcore_params].lcore_id =
(uint8_t)int_fld[FLD_LCORE];
++nb_lcore_params;
}
lcore_params = lcore_params_array;
return 0;
}
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{OPTION_CONFIG, 1, 0, 0},
{OPTION_NONUMA, 0, 0, 0},
{OPTION_ENBJMO, 0, 0, 0},
{OPTION_RULE_IPV4, 1, 0, 0},
{OPTION_RULE_IPV6, 1, 0, 0},
{OPTION_SCALAR, 0, 0, 0},
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:P",
lgopts, &option_index)) != EOF) {
switch (opt) {
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
case 'P':
printf("Promiscuous mode selected\n");
promiscuous_on = 1;
break;
case 0:
if (!strncmp(lgopts[option_index].name,
OPTION_CONFIG,
sizeof(OPTION_CONFIG))) {
ret = parse_config(optarg);
if (ret) {
printf("invalid config\n");
print_usage(prgname);
return -1;
}
}
if (!strncmp(lgopts[option_index].name,
OPTION_NONUMA,
sizeof(OPTION_NONUMA))) {
printf("numa is disabled\n");
numa_on = 0;
}
if (!strncmp(lgopts[option_index].name,
OPTION_ENBJMO, sizeof(OPTION_ENBJMO))) {
struct option lenopts = {
"max-pkt-len",
required_argument,
0,
0
};
printf("jumbo frame is enabled\n");
DEV_RX_OFFLOAD_JUMBO_FRAME;
if (0 == getopt_long(argc, argvopt, "",
&lenopts, &option_index)) {
ret = parse_max_pkt_len(optarg);
if ((ret < 64) ||
(ret > MAX_JUMBO_PKT_LEN)) {
printf("invalid packet "
"length\n");
print_usage(prgname);
return -1;
}
}
printf("set jumbo frame max packet length "
"to %u\n",
(unsigned int)
}
if (!strncmp(lgopts[option_index].name,
OPTION_RULE_IPV4,
sizeof(OPTION_RULE_IPV4)))
parm_config.rule_ipv4_name = optarg;
if (!strncmp(lgopts[option_index].name,
OPTION_RULE_IPV6,
sizeof(OPTION_RULE_IPV6))) {
parm_config.rule_ipv6_name = optarg;
}
if (!strncmp(lgopts[option_index].name,
OPTION_SCALAR, sizeof(OPTION_SCALAR)))
parm_config.scalar = 1;
break;
default:
print_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 1;
return ret;
}
static void
print_ethaddr(
const char *name,
const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
printf("%s%s", name, buf);
}
static int
init_mem(unsigned nb_mbuf)
{
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (numa_on)
else
socketid = 0;
if (socketid >= NB_SOCKETS) {
"Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (pktmbuf_pool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
pktmbuf_pool[socketid] =
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
socketid);
if (pktmbuf_pool[socketid] == NULL)
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
}
}
return 0;
}
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100
#define MAX_CHECK_TIME 90
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
if (print_flag == 1) {
if (link.link_status)
printf(
"Port%d Link Up. Speed %u Mbps %s\n",
portid, link.link_speed,
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n", portid);
continue;
}
all_ports_up = 0;
break;
}
}
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
}
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
int
main(int argc, char **argv)
{
struct lcore_conf *qconf;
int ret;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id;
uint32_t n_tx_queue, nb_lcores;
uint16_t portid;
uint8_t nb_rx_queue, queue, socketid;
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid EAL parameters\n");
argc -= ret;
argv += ret;
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Invalid L3FWD parameters\n");
if (check_lcore_params() < 0)
rte_exit(EXIT_FAILURE,
"check_lcore_params failed\n");
ret = init_lcore_rx_queues();
if (ret < 0)
rte_exit(EXIT_FAILURE,
"init_lcore_rx_queues failed\n");
if (check_port_config() < 0)
rte_exit(EXIT_FAILURE,
"check_port_config failed\n");
if (app_acl_init() < 0)
rte_exit(EXIT_FAILURE,
"app_acl_init failed\n");
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("\nSkipping disabled port %d\n", portid);
continue;
}
printf("Initializing port %d ... ", portid);
fflush(stdout);
nb_rx_queue = get_port_n_rx_queues(portid);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
nb_rx_queue, (unsigned)n_tx_queue);
dev_info.flow_type_rss_offloads;
printf("Port %u modified RSS hash function based on hardware support,"
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
portid,
}
(uint16_t)n_tx_queue, &local_port_conf);
if (ret < 0)
"Cannot configure device: err=%d, port=%d\n",
ret, portid);
&nb_txd);
if (ret < 0)
"rte_eth_dev_adjust_nb_rx_tx_desc: err=%d, port=%d\n",
ret, portid);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
ret = init_mem(NB_MBUF);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"init_mem failed\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
qconf = &lcore_conf[lcore_id];
if (qconf->tx_buffer[portid] == NULL)
rte_exit(EXIT_FAILURE,
"Can't allocate tx buffer for port %u\n",
(unsigned) portid);
}
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
if (numa_on)
socketid = (uint8_t)
else
socketid = 0;
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
fflush(stdout);
txconf = &dev_info.default_txconf;
socketid, txconf);
if (ret < 0)
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
qconf = &lcore_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
qconf->tx_port_id[qconf->n_tx_port] = portid;
qconf->n_tx_port++;
}
printf("\n");
}
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
continue;
qconf = &lcore_conf[lcore_id];
printf("\nInitializing rx queues on lcore %u ... ", lcore_id);
fflush(stdout);
for (queue = 0; queue < qconf->n_rx_queue; ++queue) {
struct rte_eth_dev *dev;
portid = qconf->rx_queue_list[queue].port_id;
queueid = qconf->rx_queue_list[queue].queue_id;
dev = &rte_eth_devices[portid];
conf = &dev->data->dev_conf;
if (numa_on)
socketid = (uint8_t)
else
socketid = 0;
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
fflush(stdout);
rxq_conf = dev_info.default_rxconf;
socketid, &rxq_conf,
pktmbuf_pool[socketid]);
if (ret < 0)
"rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
}
}
printf("\n");
if ((enabled_port_mask & (1 << portid)) == 0)
continue;
if (ret < 0)
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
if (promiscuous_on)
}
check_all_ports_link_status(enabled_port_mask);
return -1;
}
return 0;
}